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Chapter 4

4.1 Introduction

Equation of State

4-1

4.1.1 Chapter Content

This chapter explores how to get the pressure given information from the governing
conservation equations.
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4.1.2 Learning Outcomes

4·2

Objective 4.1 The student should be able to caiculate any dependent thermodynamic
property given any two independent state variables using (a) the steam
tables, (b) supplied codes, (c) supplied curve fits to the steam tables.

Condition Open book written examination.

Standard 100%.

Related Water properties.
concept(s)

,-
Classification Knowledge Comprehension Application Analysis Synthesis Evalu

ation

Weight a a I~
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Equation ofState 4-3

Objective 4.2 The student should be able to develop a flow diagram and pseudo-code
for the calculation ofP and T given densi1y and enthalpy.

Condition Open book written examination.

Standard 100%.

Related The rate form ofthe equation of state.
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evalu
ation

Weight a a a
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Objective 4.3 The student should be able to explain the pressure and temperature
response of a volume of fluid to perturbations given the F and G
functions.

-
Condition Open book written examination.

Standard 100%.

Related The rate form of the equation of state.
concept(s)

Classification Knowledge Comprehension Application i\nalysis Synthesis Evalu
atiun

-
Weight a a
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4.1.3 Chapter Layout

Forms of the equation of state to use for systems analysis

The iterative method of finding pressure.

The non-iterative method is offered as an improvement.

This leads naturally to the water property evaluation.

Fast, accurate curve fits are presented.

4-5

.,
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4.2 Thermodynamic Properties

4·6

From a thermodynamics viewpoint, the equation of state of a substance is a relationship
between any four thermodynamic properties of the substance, three of which are
independent.

EXTENSIVE FORM: An example ofthe equation ofstate involves pressure P, volume V,
temperature T and mass of system:

1t (P, V, T, M) = a (1)

If any three of the four properties are fixed, the fourth is determined.

INTENSIVE FORM: The equation of state can al~o be written in a form which depends
only on the nature of the system and not on how much ofthe substance is present, hence all
extensive properties are replaced by their corresponding specific values. Thus

1t (P, v, T) ::: 0 (2)

is the specific value form of the above equation of state, where v is the specific volume.

If any two ofthe thermodynamic properties are fixed, the third is determined.
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From a thermodynamic point ofview, the appropriate \vay to present "Tater properties is by
tables or formula for each property expressed as a function of the independent parameters
P and T (figure 4.1).

Thus given values of pressure and temperature, the calculation of other thermodynamic
properties is usually straightforward.

Unfortunately, T and P are rarely the independent param.eters in system dynamics since the
numerical solut~on of the conservation equations yield Inass and energy as a function of
time.

Hence, from the point ofview of the equation of state, it is mass and energy which are the
independent parameters.

Consequently, system codes are hampered by the fonn of water property data commonly
available.
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A key point to note is that the conservation equations are all cast as rate equations whereas
the equation of state is typically written as an algebraic equation. .

This arises from the basic assumption that, although the properties ofmass, momentum and
energy must be traced or solved as a function of time and space, the corresponding local
pressure is a pure function of the local state of the fluid. Process dynamics are not
considered.

This is the essence ofthe equilibrium assumption (in a like manner, ofcourse, we invariably
use steady state heat transfer coefficients, etc. in dynamic processes).

Historically, this mixture of form arose because thermodynamics endeavours were
concerned with equilibrium states and not with system processes. System modellers, on the
other hand, emphasized system dynamics and used what was available for constitutive
relations. System modellers are more concerned with numerical problems.
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Porsching [POR71] correctly identifies the important role offlow in his work and by keying
the formulation of node-link networks to flow, stable, efficient and accurate solution
schemes result.

However, the role of pressure has not received the equivalent acknowledgement.

Most other popular schemes, for instance, Agee [AGE83], use the algebraic form of the
equation of state.

This treatment puts the pressure determination on the same level as heat transfer coefficients.

Thus, although numerical solution of the resulting equation sets give ('·orrect answers (to
within the accuracy of the assumption),

- intuition is not generated
- time consuming iterations must be performed to get a pressure consistent with the
local state parameters.

We look first at such an iterative scheme and then consider a more efficient alternative (the
rate method).
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4.3 The Iterative Method

4-10

Given the density and enthalpy of a volume of water, the task at hand is to find the
associated values of pressure and temperature.

Figure 4.2 shows qualitatively the relation between density, p, and enthalpy, h, for a given
P.

At low enthalpy, the fluid is single phase liquid and the density is high.

As heat is added and the fluid reaches saturation temperature, vapour is generated to form
a two~phase mixture and the density approaches the vapour density.

The curve is well behaved and continuous making it a suitable candidate for numerical
search routines.
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We start the iteration procedure by guessing a pressure. Usually in system transient
simulation codes, the value ofP at a previous time step is a good choice.

Given P we calculate hfsat and hgsat, the samration enthalpies for the liquid and vapour phases,
respectively.

If h < hfsat then the fluid is single phase liquid.

Ifh> hgsat then the fluid is single phase vapour.

Otherwise the fluid is a two-phase mixture with a quality, x E: [0,1].

The case of two-phase equilibrium is considered first. Subsequently, the equations are
extended to cover single phase and two-phase non-equilibrium fluid.
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4.3.1 Two-Phase Equilibrium Fluid

4-12

For two-phase fluid, the density and enthalpy are functions of the pressure and quality.
Since we know the density, p, we can estimate the quality (Xest) for the guessed P (assuming
a homogeneous mixture) since:

v = ~ = viP) + xest Vfg(P) (3)

and thus calculate the enthalpy based on the guessed P:
hest =. hiP) + xest hfg(P) (4)

(5)

This estimated value ofh will differ from the known value ofh. This difference is used to
drive the iteration, ie, to update the guessed pressure as illustrated in figure 4.3:

dP = _A._h_
(BhlCJP)p

The denominator in equation 5 must be evaluated numerically if analytical expressions are
not available. The pressure is updated via:

P = P + ~p (6)

and the iteration is repeated until the pressure has converged to some tolerance. The
temperature is just the temperature of saturated fluid at that pressure.
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4.3.2 Single-Phase Sub-cooled and Superheated Fluid

For single phase fluid, the density and enthalpy are functions ofP and T, ie:
p = pCP, T) and h = h(P, T)

For a guessed P and T, p and h can be found directly from the water property tables.

But this is just an estimate since P and T are guessed.

4-13

(7)

(8)

The true values of p and h lie some dis1ance away and, to a first approximation, the true
values and the estimated values are related by a Taylor's series expansion:

+ ap ] liT + dP] APp = Pest aT p ap T

h = hest + dh] liT + dh] liP
aT p ap T

(9)
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Defining IIp = p - Pest and llh =h - he:;t, we solve for llP and /1T:

~l IIp-~I ~h
aT)p aT)p

llP = -----------

ap\ dhJ _ ap\) ahJ
apJ T dT p aT p ap T

ahJ IIp - ~J llh
ap T aT T

II T = ---,-------,--------:----,--

ap) dhJ apJ ahJ
aT p dP T - ap T aT p

(10)

(11)
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or, more compactly,

~ ;:;11'·
"/

4-15

(12)

(13)

The G functions are summarized in table 4.2, The derivatives must be evaluated
numerically if analytical expressions are not available.

The pressure and temperature are updated via:
P = P + L\P and T = T + L\T (14)

and the iteration is repeated until the pressure and temperature have converged to some
tolerance.
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4.4 The Rate Method

We next consider a scheme (called the Rate Method) that eliminates the need for iteration
with no loss in accuracy.

The case of two-phase equilibrium is considered first in order to illustrate the method.

Subsequently, the equations are extended to cover single phase and two-phase non­
equilibrium fluid.
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4.4.1 Two-Phase Equilibrium

For a two-phase homogeneous mixture we have:
v = Vf + xv.tg

h = hf + xhfg

4-17

(15)

(16)

where Vfg ;: Vg- vf and h fg == h g- hf.

We wish to relate rates ofchange ofpressure to rates ofchange in p and h. Specifically, we
desire:

dP= G1dp + G2dh or dP = G dp + G dh
dt 1 dt 2 dt

(17)

since dp/dt and dh/dt (or equivalently, dM/dt and dH/dt) are available from the mass and
enthalpy conservation equations.
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First concentrating on the case of constant p (or v), to obtain G2, we differentiate
equation (16) to gives:

dh = (Bh) dP = II Bhf + h Bx_ + X ~hfg] ~P . (18)

lit "BP pdt BP fg BP BP dt

(19)

Substituting this into equation (18) gives:

dh =0 rBhf + x Bhfg _ hfg favf
dt 1BP BP Vfg l BP

or equally:

BVfg ]} dP+ x -
BP dt

(20)
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_d_P __---::-__.__---::-_V--"'fgc- _. dh

dt {[Bhf Bhfg ] [B'lf BVfg]} dtV -+x-- -h -+x--=
fg BP BP fg BP BP

:::: Vfg dh .. G dh
{DENOMINATOR} dt - 2 dt

4-19

(21)

This gives the pressure rate response due to an enthalpy rate change, holding p constant.

Ifwe repeat the above but holding h constant we find:

dP :::: - hfg d v__ hfg v
2

od p :::: G d P
dt {DENOMINATOR} dt {DENOMINATOR} dt 1 dt

(22)

Note that G1 and G2 are functions that depend only on the loeal saturation fluid properties
and their slopes at the local pressure.
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Combining equations 21 and 22 to get the total pressure rate response when both hand pare
varymg:

dP

dt

dp
== G j (P, x) -

dt

dh
+ G2 (P, x) -.

dt
(23)

This is the rate form ofthe equation of state for two-phase equilibrium fluid in terms ofthe
intensive rate properties, dp/dt and dh/dt, which are obtained from the continuity equations.
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(24)

Equation 23 can be cast in the extensive form by noting that, since p = M/Y and h = HIM,
dp 1 dM M dV_ .. - -- ----
dt V dt y 2 dt

and
dh

dt

1 dH
-- - --

M dt

II dM---
M 2 dt

(25)

Substituting into equation 23 and collecting terms:

dP = ( G1 _ G2 HJ dM + G2 dH
dt Y M 2 dt M dt

GjM dY
- -

y 2 dt
(26)

(27)

dV

dt
=

dP
dt

After some simplification and rearrangement we find:
dM dH

F-+F--+F
j dt 1. dt 3

Mg F4 + MfFs

where:



Equation ofState

dV
-v)--~(h -h)

f ap g f

aVf- v) - -- (h - h)
t ap g f

4·22

(28)

The F functions are smooth, slowly varying functions ofpressure (see appendix 4) provided
good curve fits are used. .

The latest steam tables [HAA84] were used to fit saturated properties to less than 1/4%
accuracy using low order polynomials and exponentials [GAR88].

Considerable effortwas spent on obtaining accuracy and continuous derivatives over the full
pressure range.

The fact that good fits are available means that the F functions are well behaved which in
tum makes the rate form of the equation of state extremely well behaved, as shown later.

D:lTEACH\nlli-KTS2\oymud\0ver4.wpi llaulry2J. 199121;52



Equation ofState

The G functions are also well behaved for the same reasons.

4·23

The F and G functions have direct physical interpretations which aid in generating intuition.

The F functions relate changes in the extensive properties, M, H and V, to changes in
pressure.

The G functions related changes in the intensive properties, p and h, to changes in pressure.

Often, a simple numerical evaluation of these functions during a simulation aids in
developing an appreciation ofthe changing roles ofthe key actors in a dynamic simulation.

For instance, because F1 is negative, we immediately see that adding mass to a fixed volume
of liquid with fixed total enthalpy will cause a depressurization (because the specific
enthalpy, h = HIM, is decreased).

But, since G1 is positive, an increase in density in a fluid of fixed specific enthalpy causes
a pressurization.
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4.4.2 Single-Phase Sub-cooled and Superheated Fluid

4-24

For the single-'phase sub-cooled or superheated case, we do not have to account for the
sorting out between phases as we did for the two phase case.

Thus the derivation is more direct and less complex. We could simply use:
P = 7t(p, h)

to give:

dP OP) dp OP) dh-=- -+- -
dt 0P h dt ah p dt

(29)

(30)

but, since the steam tables are given as a function ofP and T, the slopes in equation (30) are
not easily obtained.
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To cast the pressure rate equation in telms ofthe independent variables, P and T, consider:
p = p (P, T) (31)

and
h=h(P,T) (32)

Note that the non-equilibrium case requires the explicit tracking of the temperature in
addition to pressure. Taking derivatives ofEquations (31) and (32):

dp =.Q£.] _dP +~] dT
(33)

dt ap T dt aT p dt

and
dh ah] dP ah I dT
-=- -+- --
dt ap T dt aT ) p dt .

(34)
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But we desire:

and

dP = G dp
dt lP dt

+ G dh
2P ­

dt

4-26

. (35)

dT

dt
= G dpIT-+

dt

dh
G2T dt (36)
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This is easily obtained by solving equations (33) and (34) for dP/dt and dT/dt to yield:

ah) dp _ .§Y-) dh
dP aT p dt aT p dt
-- -

dt ap) dh) op) ah)
ap T dT p aT p ap T

4-27

(37)

and

dT
dt

§_h) _dp ap )\ _dh
ap T dt aT T dt

= ---,-------:-------,------:-
ap ) dh) ap) ah)
aT p dP T - ap T aT p

(38)

which is the intensive form we desire.
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(39)=dP
dt

The extensive form is obtained as for the two-phase equilibrium case. Equations (24) and
(25) are substituted into equations (37) and (38) and after rearrangement we find:

F dM + F. ~H + F dV
IP dt 2P dt 3P dt

and

dT
dt

=
(40)

where
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F =p~) +h~)
lP aT aT

P P

F = _ ap)
2P at

P

F = - p2 ap )
3P aT

P

d P) ah 'J ap ) dh)F4P = 0 for subcooled, = - - - - -- for supt::rheated
ap T aT P aT P dP T

FSP = d PI) ah) _ ap) dh) for subcooled = 0 for superheated
ap T aT p aT p dP T

ah) op)F =p- +h·-
IT aT aT

p P

Fn = - ~~L

Fn = _p ah)
aT T

F
4T

= - F
4P

FST = - Fsp

Mv = mass of vapour phase = 0 for subcooled, = M for supl'rheated

M, = mass of liquid phase = M for subcooled = 0 for superheated

4-30

(41)
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4.4.3 Two-Phase Non- Equilibrium

The rate form for the equation ofstate for the two-phase non-equilibrium case is a simple
extension of the single~phase non-equilibrium case.

The liquid and vapour phases are treated independently to give:
dPk k dPk k dhk
-- = GIP -- + G2P --
dt dt dt

(42)

(43)

where k represents either eor v for the liquid or vapour phases respectively.

In general, the 6 equation modei (3 continuity equations for each phase) would be used for
the general unequal temperature, unequal velocity, unequal pressure situation. Thus dpk/dt
and dhk/ dt are available to the rate form of the equation of state.

The expressions for the F and G functions are summarized in tables 4.1 and 4.2. These
expressions cover the full range from sub-cooled liquid to superheated steam.
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4.5 H20 Property Fits

4-32

To facilitate the calculation of water properties, the 1984 standard tables were accurately
curve fitted as discussed in detail in appendix 4.

These fitted functions are supplied in the files H20PROP.FOR and H20PROP.C for user
convemence.

These FORTRAN and C functions cover a wide range of pressures and temperatures and
should be sufficient for most nuclear reactor simulations, with the exception of severe
accidents that generate extreme conditions.

These functions are fast and more than accurate enough given the other errors in system
simulation [GAR88, GAR89, GAR92].
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The basic overall approach taken in the curve fitting task was that, since the more difficult
region to fit was the transition from single to two-phase and since most power plants operate
at or near this region, careful attention would be paid the phase transition region at the
expense of accuracy away from the saturation line, if necessary.

Thus, the first major step was to accurately fit the saturation lines.

Then, since density, enthalpy and other properties vary more strongly with T than with P (as
shown in figure 4.4), the property in question, say density, would be calculated based on the
deviation from the saturation value at the given T, ie:

p(P,T) " p,.lT) + ~~) l -P",,(T)) (44)

Figure 4.5 illustrates the strategy.

It should be obvious by now that not only the properties need to be fitted but the slopes are
needed as well.

Both the properties and the slopes of the propelties must be free of discontinuities if
numerical searches are to converge.
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The supplied code is divided into 3 levels:
- Level l: the fitted functions
- Level 2: derived functions and collections of functions (for convenience)
- Level 3: logic sorter and manager

Details on these routines are given at the end of appendix 4.

4-34

It is instructive to study appendix 4 in conjunction with the supplied code (WATERA.FOR,
PROPA.FOR, H20PROP.FOR).
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4.6 Exercises

4-35

1. Using the spread sheet macros for Microsoft Excel supplied by G.R. McGee (as per the
memo at the end of this chapter, calculate and plot the density, enthalpy, quality and
void fraction for a range ofpressures ( 1 to 100 atmospheres) and temperatures(50 °C
to 350°C). Make sure you cover the subcooled, saturated and superheated ranges.

2. Using the supplied code, WATERA.EXE:
a. Calculate p and h for P=1 0 MPa and T=300 DC. Increase the temperature in steps

to see the approach to two-phase.
b. Using p and h slightly different than that found in (a), calculate P and T.
c. Practice calculating p given h and P.

3. Using the supplied skeleton code NODE.C:
a. Fill in the missing code required to calculate P and T given p and h.
b. Use the code to calculate AP and AT when a node experiences a AM, a AH or a

AV. Compare your answers to WATERA.EXE.
c. Use the code to calculate AP and AT when a node experiences a Ap and a Ah.

Compare your answers to WATERA.EXE.
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-
Case F, F, F) F, F,

24> equilibrium
ah. oVg ah aVf(all derivatives hgvf - hfvg vfg hf~ --v - -h _f v --h

alcng saturation ar fg oP fg ilP fg ap fg
line) -

14> non- 0 subcooled ~ ~ ) ah) a p) ah)equilibrium
ah) h ap ) _ ap) _ 2 ah) ap) ah) ap) ah) aP T aT p - aT p ap T

pressure
p aT p'" aT p aT p P-=r oP T aT p aT p ap Td p subcooled

superheated 0 superheated

14> non·
p ah) + h a p ) _ op) _ p2 ~)equilibrium - F,p - F,p

temperature ap T ap T ap T ap T

Table 4.1 Summary of the F functions for the rate form of the equation of state
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. -
Case G1 G2

24> equilibrium h v2 vfS
(all derivatives fB

along saturation { [ah,g ahrg] [avp avfg ]} {[Ohf ahrs ] [avf ~]}v - +x-- -h - +x-- v -+x-- -h -+x
line) fg ap iJP fg op ap fg ap oP fg ap ap

14> non-equilibrium ah) a p)pressure aT p -aT p

lap) ah) - a
p

) ah) ] [ a
p

) ah) a
p

) ah) ]
aT T ap p aT p oP T ap T ap p aT p ap T

14> non-equilibrium ah) a
p

)temperature ap T -oP T

op) Oh) _ op) ah) a p ) or.) ap) ah)
aT p ap T ap TaT, p aT p ap l' ap T aT p

Table 4 2 Summary of the G functioI's for the rate form of the equation of state
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Figure 4.1 P-v-T surface for water.

D:\TFACH'lTb.i-HTS2\Ombelld\0¥er4.wpl JIDU1'Y.u. 1993 lU2



Equation ofState 4-39

- --

p
---

Ta.~

t
t"'

~

",,,
"

J

-L
\

J \

~ 2¢> 'J

--
~~Cii)h

I¢ li~'d

\

h~ lot l' '~3ed

h~
h

Figure 4.2 Numerical search for P given p and h for a two-phase mixture.
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Figure 4.3 Error correction scheme for pressure in two-phase.
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Figure 4.4 Density vs. pressure at various temperatures in subcooled water.
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Figure 4.5 Basis for curve fitting in the subcooled region.

D:\1"E.!.CH\Thli-HTS2\OverfIelc!\OYel'4."l'1 loIao'123.199I 21:'l


	Chapter 4 Equation of State
	4.1 Introduction
	4.1.1 Chapter Content
	4.1.2 Learning Outcomes
	4.1.3 Chapter Layout

	4.2 Thermodynamic Properties
	4.3 The Iterative Method
	4.3.1 Two-Phase Equilibrium Fluid
	4.3.2 Single-Phase Sub-cooled and Superheated Fluid

	4.4 The Rate Method
	4.4.1 Two-Phase Equilibrium
	4.4.2 Single-Phase Sub-cooled and Superheated Fluid
	4.4.3 Two-Phase Non-Equilibrium

	4.5 H2O Property Fits
	4.6 Exercises

	Tables
	4.1 Summary of the F functions for the rate form of the equation of state
	4.2 Summary of the G functions for the rate form of the equation of state

	Figures
	4.1 P-v-T surface for water
	4.2 Numerical search for P given p and h for a two phase mixture
	4.3 Error correction scheme for pressure in two-phase
	4.4 Density vs. pressure at various temperatures in subcooled water
	4.5 Basis for curve fitting in the subcooled region


